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SUMMARY.  Several methods for generating random variables with univariate and multivariate 
Wallenius' and Fisher's noncentral hypergeometric distributions are developed. Methods for the 
univariate distributions include: simulation of urn experiments, inversion by binary search, 
inversion by chop-down search from the mode, ratio-of-uniforms rejection method, and rejection 
by sampling in the t domain. Methods for the multivariate distributions include: simulation of urn 
experiments, conditional method, Gibbs sampling, and Metropolis-Hastings sampling. These 
methods are useful for Monte Carlo simulation of models of biased sampling and models of 
evolution and for calculating moments and quantiles of the distributions. 

KEY WORDS:  Noncentral hypergeometric distribution; Wallenius; Fisher; Multivariate 
distribution; Variate generation; Sampling; Simulation. 

1. Introduction 
Two different probability distributions are both known in the literature as "the" noncentral hypergeome-
tric distribution. These two distributions will be called Wallenius' and Fisher's noncentral hypergeometric 
distribution, respectively. An accompanying paper describes the nomenclature problems as well as 
several methods for calculating probabilities from Wallenius' noncentral hypergeometric distribution 
(Fog, 2007). Wallenius' distribution has many applications, including models of biased sampling and 
competitive models of Darwinian evolution (Wallenius, 1963; Manly, 1974). Fisher's noncentral hyper-
geometric distribution may be used for modeling non-competitive models of evolution when the total 
number of survivors is known, as well as for statistical tests on contingency tables (McCullagh and 
Nelder, 1983). Methods for sampling from both distributions are needed for Monte Carlo simulations of 
evolutionary systems and models of biased sampling as well as for finding moments, quantiles, etc. The 
purpose of the present article is to develop efficient methods for sampling from these distributions. 

When comparing the efficiency of different sampling methods, we want to distinguish between the set-up 
time, which is the time required to compute constants that depend only on the parameters of the distribu-
tion, and the sampling time, which is the time required to generate one variate, not including the set-up 
time (Stadlober, 1989). A simulation of an evolutionary system will typically require only one variate for 
each set of parameters, because the composition of the gene pool is likely to change for each generation. 
The best sampling method for this application will thus optimize the total execution time, i.e. the sum of 
the set-up time and the sampling time. Other applications that require many variates for each set of para-
meters will prefer a method that optimizes the sampling time only, while the set-up time is less important. 

An implementation of the methods developed in this article in the C++ programming language is 
available from www.agner.org/random. 

2. Definition of distributions 
The multivariate Wallenius' noncentral hypergeometric distribution has the probability function given by 
(Fog, 2007; Chesson, 1976): 

http://www.agner.org/random/


2 

)()(),,;mwnchypg( xxωmx ΙΛ=n ,  where (1) 

∏
=









=Λ

c

i i

i

x
m

1

)(x , (2) 

∫∏
=

−=Ι
1

0
1

/ )1()(
c

i

xd tt ii „ωx , (3) 

∑
=

−=−⋅=
c

i
iii xmd

1
)()( ωxmω , (4) 

),...,,(  ,),...,,(   ),,...,,( 212121 ccc mmmxxx ωωω=== ωmx , (5) 

which is valid for d > 0. 

The univariate distribution (c = 2) is defined as 
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where x1 = x,  x2 = n-x,  m1 = m,  m2 = N-m,  w1 = w,  w2 = 1. 

The multivariate Fisher's noncentral hypergeometric distribution, which is also called the extended 
hypergeometric distribution, is defined as the conditional distribution of independent binomial variates 
given their sum (Harkness, 1965). The probability function is (McCullagh and Nelder, 1983): 
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The univariate distribution (c = 2) has the probability function 
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where x1 = x,  x2 = n-x,  m1 = m,  m2 = N-m,  w1 = w,  w2 = 1. 

The parameterization here is chosen so as to emphasize the similarity between the two distributions. Both 
distributions are reduced to the (multivariate) binomial distribution when n = 1, or to the (multivariate) 
hypergeometric distribution when all wi's are equal. Hence, it is not surprising that the two distributions 
approximate each other when n á N and when the odds ratios are all close to 1. The univariate Fisher's 
distribution has the same minimum and maximum as the (central) hypergeometric distribution: 

),0max(min Nmnx −+= ,  ),min(max mnx = . (11) 

The following symmetry relations are easily derived: 
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(11), and (12) apply analogously to the univariate Wallenius' distribution; (13) and (14) do not. 

In the following, the same abbreviations are used for the distributions and their probability functions. 

3. Sampling from the univariate Fisher's noncentral hypergeometric distribution 
When sampling from the univariate Fisher's noncentral hypergeometric distribution, it may be 
advantageous to apply the symmetry transformations (12) (13) (14), if needed, to make n ≤ m ≤ N/2 so 
that xmin = 0 and xmax = n. 

3.1  Direct inversion method and chop-down search from the mode 

Let U  be a variate with uniform distribution on [0,1), let f(x) be the probability function of a discrete 

distribution, and let ∑
=

=
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)f()F(  be the cumulative distribution function. The smallest x that 

satisfies )F(xU <  will then have the distribution f (Devroye, 1986; Cheng, 1998). 

A method based on binary search in a table of F(x) is advantageous in applications where sampling time 
is more important than set-up time. When set-up time is important, it is preferable to minimize the 
number of f(x) values that have to be calculated by evaluating the most probable x-values first. Let M 
denote the mode, and define the mapping ...  ,2  ,1  ,1  , 3210 +=−=+== MzMzMzMz  , where z-

values beyond xmin and xmax are excluded. If Y is the smallest number that satisfies ∑
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will have the distribution f (Stadlober, 1989; Devroye, 1986). Liao and Rosen (2001) use this method for 
sampling from Fisher's noncentral hypergeometric distribution, using the recurrence relation 
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This method still has a large set-up time because the g function (8) has to be evaluated for all x-values in 
the support. Liao and Rosen (2001) recommend to calculate the g values relative to g(M) using (15) and 
ignore negligible values in the tails. Noting that division takes 5 - 10 times as long as multiplication on 
contemporary computers, we may improve the speed of this method further by scaling the g values and 
their sum with the product of all denominators in (15) in order to avoid the many divisions. During the 
course of these calculations, it may be necessary to downscale all values to avoid numerical overflow. 

3.2  Ratio of uniforms rejection method 

The principle of the rejection method is as follows. Let f(x) and h(x) be two probability functions with the 
same domain X so that  

)h()f(: xkxxk ≤Ξ∈∀∈∃ +Ñ .  (16) 

Generate a variate X with distribution h and a Bernoulli variate Z with probability parameter p(X) = f(X) / 
{kh(X)}. Repeat this procedure until Z = 1. Then X will have the distribution f (Devroye, 1986). The ratio-
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of-uniforms method is a rejection method based on the hat function (Stadlober, 1990): 
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Let U and V be two independent random numbers with uniform distribution in the intervals 10 ≤<U  
and 11 ≤≤− V , respectively. Do the transformation aUsVX += ,  2UY = . The rectangle in the 
(u,v) plane is thereby transformed into the area delimited by the hat function y = h(x) in the (x,y) plane. 
The acceptance condition for a discrete distribution is  )f( Xk <V . a, s and k are chosen so that 

)h()f( xkx ≤  for all x ∈  X. The advantage of the ratio-of-uniforms method is that the generation of X 
and Y is simple and fast, and the acceptance rate is reasonably good. There is no reason to normalize f(x) 
and h(x) because any proportionality factor is absorbed by the optimal choice of k = f(M), where M is the 
mode. This is a tremendous advantage when sampling from the fnchypg distribution because we do not 
have to calculate the large sum in the denominator of (7). We may improve the speed further by removing 
all factors that do not depend on x and replace f(x) by 
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The optimal value of a is 2
1+µ  for a symmetric mass function. It is fairly straightforward to find the 

optimal value of s by numerical methods for a given set of parameters (Stadlober, 1989). However, since 
many applications require higher priority to minimizing the set-up time than to improving the acceptance 
rate, we will prefer a sub-optimal value of s that can be calculated relatively fast. Ahrens and Dieter 
(1989) find that the following values of a and s fit the Poisson distribution 
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where m and s are the mean and standard deviation. Stadlober (1989, 1990) has found experimentally 
(but without theoretical proof) that the same formula fits the binomial and hypergeometric distributions. It 
is found experimentally that this formula also fits Fisher's noncentral hypergeometric distribution when 
the exact mean and variance are used. For practical reasons, we prefer to use the following 
approximations to the mean and variance (Levin, 1984; Liao, 1992): 
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When these approximations are used, the formula needs to be modified to 

ωσ log32
12

21 hhhs +++=   with  h1 = 0.514,  h2 = 0.8585,  h3 = 0.016. (22) 

In general, a dominating function h(x) may be obtained either by theoretical or by experimental means. 
Universal theoretical methods either have long set-up times or poor acceptance rates (Devroye, 1986). 
While it is possible that an experimentally obtained dominating function gives a tighter fit than an 
expression obtained by theoretical methods, we have to be strict about the criteria for accepting an 
experimental verification. Stadlober does not specify any such criteria. The number of possible parameter 
sets to test is infinite if no upper bound for the integer-valued parameters is specified, or if at least one 
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parameter is real-valued, as is the case here. A natural approach is therefore to test the validity of the 
formula for a large number of random parameter sets. The distribution from which the random parameter 
sets are sampled may be critical. It is possible that a hypothetical parameter set that invalidates the 
formula has a very low probability for a given distribution of parameter sets. It is therefore necessary to 
repeat the test procedure with different distributions. Obvious choices include combinations of uniform 
and exponential distributions for each parameter. Furthermore, it is recommended to study the system in 
order to identify any narrow areas of the parameter space that are particularly critical. If such critical 
areas are found, then it is necessary to design a distribution that increases the probability that parameter 
sets fall in these areas. This has been the case with Wallenius' distribution, as discussed below. 

The formula (22) has been verified by testing with several different distributions totalling more than 109 
random parameter sets in the range  N § 109 ⁄ 10-9 § w § 109. 

The calculation of the mean according to (20) is subject to loss of precision when n, m and w are all very 
large. It is therefore recommended to use the symmetry transformations (12) and (14), if needed, to make 
n ≤ N / 2 and m ≤ N / 2. 

4. Sampling from the multivariate Fisher's noncentral hypergeometric distribution 
In special cases, the number of colors can be reduced by eliminating colors with zero weight or zero 
number, or by joining colors with the same weight: 
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4.1  Conditional method 

The conditional method for sampling from a multivariate distribution is the method where X1 is sampled 
first from the marginal distribution, then X2 is sampled according to the conditional distribution of X2 
given X1, and so forth (Johnson, 1987). This method is useful for the multivariate (central) hypergeome-
tric distribution, where the marginal distribution of X1, as well as the conditional distribution of X2, etc., 
are univariate hypergeometric distributions. For Fisher's noncentral hypergeometric distribution, however, 
the marginal distribution of X1 is difficult to calculate exactly, so we have to do with approximations. 

Consider, for the sake of argument, the four-color example where w1 = w2 ≠ w3 = w4. Here, the 
distribution of X1+X2 is a univariate fnchypg distribution according to (24), while the marginal 
distribution of X1 alone is more difficult to calculate. Therefore, in the case where w1 ≈ w2 à w3 ≈ w4, we 
expect a method based on an approximation to the marginal distribution of X1+X2 to be more accurate 
than a method based on an approximation to the marginal distribution of X1 alone. 

Assume that any possibility for reducing the number of colors according to (23) and (24) has been 
utilized, and let the colors be sorted by weight so that w1 > w2 > ... > wc. Define the geometric mean of the 
highest and the lowest weight 

cωωω 1=ò . (25) 

Let b be the lightest color not lighter than wò: 
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Consider colors not lighter than wò as the heavy group H = {1,2,...,b}, and colors lighter than wò as the 
light group L = {b+1,b+2,...,c}. The number of balls in the sample that belong to the heavy color group 
and the light color group, respectively, are 
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The distribution of YH is given by the probability function 
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The distribution of YH can now be approximated by 
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Define the subvectors 

( )bXX ,...,1H =X , ( )cb XX ,...,1L +=X ,  (33) 
( )bmm ,...,1H =m , ( )cb mm ,...,1L +=m ,  
( )bωω ,...,1H =ω , ( )cb ωω ,...,1L +=ω . 

Now it follows from the definition of Fisher's noncentral hypergeometric distribution that the conditional 
distribution within each group, given YH = y, are  

),,mfnchyp(~ HHH ωmX y   and  (34) 

),,mfnchyp(~ LLL ωmX yn − . (35) 

We can now obtain a sample that approximates the multivariate distribution by sampling YH from the 
univariate distribution (32) and apply the same procedure recursively to the distributions within 
subgroups according to (34) and (35), until all Xi's have been determined. It follows from the above 
arguments that the distribution of the resulting X approaches the exact distribution ),,mfnchyp( ωmn  as 
the differences in weight within groups go towards zero. This has been confirmed experimentally, where 
a reasonable precision was obtained when differences in weight within groups was not too large. 
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4.2  Gibbs sampling 

A Gibbs sampler is an infinite Markov Chain sequence whose limit is a random vector with the desired 
distribution (Casella and George, 1992). Suppose we want to generate a random vector X = (X1,...,Xc) 
with distribution f. The sequence { kX,  k = 0...∞ } is defined by an arbitrary starting point 0X and a 
transition from kX to k+1X which is created as follows. Obtain k+1X1 from the conditional distribution of X1 
given X2, X3, ... Xc. Then obtain k+1X2 from the conditional distribution of X2 given X1, X3, X4,... Xc, and so 
forth. In short, for i = 1...c, obtain k+1Xi by drawing from the conditional distribution  
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k xxijxxijxX =>∀=<∀ ++ . (36) 

This makes it possible to obtain variates of a multivariate distribution by sampling from the c conditional 
distributions of each component given the other components. The transition from kX to k+1X by repetition 
of (36) for i = 1...c is called a scan. In order to achieve independence of the starting point 0X we need a 
burn-in period of many scans before accepting a random vector. A Gibbs sampler for a discrete 
distribution is convergent if all states communicate, and the limiting distribution is exact for k → ∞ 
(Roberts and Polson 1994; Besag et. al. 1995). McDonald, Smith and Forster (1999) have mentioned the 
possibility of using a Gibbs sampler for the multivariate Fisher's noncentral hypergeometric distribution, 
but lacking an efficient way of sampling from the univariate distribution, they apparently have not 
implemented it. Gibbs samplers have been developed mainly for calculating moments and quantiles of 
non-standard distributions. The interdependence of consecutive kX is not a problem in such applications. 
For simulation applications, however, all samples must be independent. We therefore need a new starting 
point and a new burn-in period for each sample. It is therefore important to obtain fast convergence in 
order to keep the burn-in period short.  

A multivariate Fisher's noncentral hypergeometric distribution with c colors can be regarded as a c-1 
dimensional distribution because for any color j we can calculate ∑

≠

−=
ji

ij XnX . The conditional 

distribution of Xi and Xj given the remaining components is a univariate Fisher's noncentral 
hypergeometric distribution, according to (34), hence 
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j may be fixed or variable. We can improve the convergence by sampling the colors by the order of their 
variance. The variance of the marginal distribution of Xi can be approximated by the variance of a 
univariate distribution with the same mean, using (21): 
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The mean of a multivariate Fisher's noncentral hypergeometric distribution can be approximated by the 
multivariate extension to (20): 
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Other expressions for the mean and variance are given by McCullagh and Nelder (1983). 

In order to minimize the burn-in period, it is useful to use the approximation obtained by the conditional 
method as starting point, and make each scan through consecutive i with j = i mod c. It is necessary that 
mi and wi are positive for all i in order to make sure that all possible states communicate. The fact that this 
algorithm will converge towards the exact distribution follows from the theory of Metropolis-Hastings 
sampling (Hastings, 1970). Alternatively, we may define the mapping 
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and apply Gibbs sampler theory (Roberts and Polson, 1994) to the distribution of )...,,( 1 cYY , but (40) is 
injective only for c odd. 

5. Sampling from Wallenius' noncentral hypergeometric distribution 

5.1  Simulating the urn experiment 

An obvious method for generating variates with Wallenius' noncentral hypergeometric distribution is to 
simulate an urn experiment with bias and without replacement. This method is useful for both the 
univariate and the multivariate distribution. 

It is required that the balls be taken one by one. The multivariate Wallenius' noncentral hypergeometric 
distribution is reduced to the multinomial distribution for n = 1: 
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The probability distribution of the color of the first ball is p(i). A variate I with this distribution is 
generated by inversion, using a table of the cumulative distribution function 
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The number of balls of each color that remain in the urn after the first ball has been taken is found by 
decrementing mI. The distribution of the second ball is found in the same way, using the adjusted value of 
m. This process is repeated until n balls have been taken. This method requires up to n uniform variates. 
It is therefore economical only for small n. In cases where c is very high, it is advantageous to organize 
the F(i) table as a binary tree in order to minimize the number of p(i) values that have to be recalculated 
after each draw. 

5.2  Direct inversion method and chop-down search from the mode 

The inversion methods described above are also applicable to the univariate Wallenius noncentral 
hypergeometric distribution. The standard deviation s of Wallenius' noncentral hypergeometric 
distribution is often quite small. As a rule of thumb, we may say that the variance of the discrete 
probability distributions decrease in the order: Poisson > binomial > hypergeometric > Fisher's noncentral 
hypergeometric > Wallenius' noncentral hypergeometric. A small s means that relatively few probability 
values need to be calculated when searching from the mode. On the other hand, the calculation time for 
the probability function is quite high. Inversion is therefore economical only when s is low or when 
many variates are required with the same set of parameters. 

5.3  Ratio of uniforms rejection method 

While Ahrens and Dieter's formula (19) for the ratio-of-uniforms rejection method fits Fisher's noncentral 
hypergeometric distribution, it does not fit Wallenius' distribution. The following corrections are required 
in order to make sure that )h()f( xkx ≤  for Wallenius' distribution: 

2
1* += µa  (43) 
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h1 = 0.40,  h2 = 0.8579,  h3 = 0.40,  h4 = 0.029,  h5 = 0.23, (47) 

where M is the mode, m* is the approximation to the mean given by the equation (Fog, 2007) 
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and sN is the approximation to the standard deviation given by 
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It is not a problem here that no good way of approximating the standard deviation is known, because the 
necessary corrections to Ahrens and Dieter's formula are smaller, and the acceptance rate better, when the 
crude approximation sN is used than when the exact standard deviation is used. s3 and s4 are only needed 
in situations where the mode is near xmin or xmax. s4 is not needed when 8    5 2

1
5
1 >∨−<∨<< ααω . As 

mentioned above in connection with Fisher's noncentral hypergeometric distribution, it is necessary to test 
the experimentally determined dominating function thoroughly. This is particularly important for 
Wallenius' distribution because the most critical parameter sets are concentrated in relatively small areas 
of the parameter space characterized by n being close to N. The formula (43)-(47) has therefore been 
verified by testing with several different distributions of random parameter sets including distributions 
that give a high probability of n being close to N. These tests total more than 109 random parameter sets in 
the range N § 109 ⁄ 10-9 § w § 109. 

The rejection method is recommended when s and n are so high that other sampling methods are 
inefficient. Since the calculation time for f(x) is quite high, the economy of this method depends mainly 
on the number of evaluations of f(x) needed for finding the mode and for the subsequent 
acceptance/rejection loop. The number of function evaluations may be reduced by fast acceptance and 
fast rejection schemes (Devroye, 1986), using the bounds given by Wallenius (1963): 

)(f)f()(f 21 xxx ≤≤   for w < 1 , (50) 
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The underlined superscript denotes a falling factorial power: )1)...(1( +−−= baaaab . According to 
(50), we can accept X when  )(f1 XkV <  and reject X when  )(f 2 XkV >  for w < 1 and opposite for 
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w > 1. Only when kV lies between these bounds do we need to calculate f(X). The time used for 
calculating f1(X) and f2(X) pays back only when f1(x) and f2(x) are close to f(x), which is the case when n 
is small compared to N, and w is close to 1. 

An alternative improvement, which can eliminate the need for the time-consuming calculation of f(x) in 
the rejection loop, involves sampling in the t domain. This method is based on the following theorem: 

Let ∫ Φ=
T

),()f( yyxx „  be a the probability function of a distribution on the domain X, where F(x,y) is a 

non-negative function on the area T. Let the positive constant k and the distribution function h(x) on X be 
defined so that )()h(: xfxkx ≥Ξ∈∀ . Let U(x,y) be a distribution function on the domain T satisfying 
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yxyxyx Φ≥∈∀Ξ∈∃ U . For any fixed x for which this condition holds, let Y  be a variate in 

T with the distribution U(x,y) and define 
),()h(

),( ),(
yxxk

yxyxq
U

Φ= . Let the conditional distribution of a 

variate Z, given Y, be a Bernouilli distribution with parameter q(x,Y). The distribution of Z is then a 

Bernouilli distribution with parameter 
)h(

)f(
xk

x
, as proven by 

)h(
)f(),(),()Pr()|1Pr()1Pr(

TT xk
xyyxyxqyyYyYZZ ======= ∫∫ „U„  É 

When generating a variate X with distribution f(x) using a rejection method based on the dominating 
function kh(x), we can avoid the calculation of f(x) in the rejection loop for all x for which q(x,y) ≤ 1, by 
sampling Y in the T domain from the distribution U(x,y) and then sampling Z from the conditional 
distribution given Y. The number of x-values for which this method is applicable can be increased, if 
desired, by appropriate choice of k. 

To apply this method to Wallenius' distribution, we use the expression ∫ ΦΛ=
1

0 1 )()()f( ττ „xx , where 

the integrand ∏
=

− −=Φ
c

i

xrrd iird
1

1
1 )1()( ωτττ has its maximum in t = ½ when r is the solution to 

d
rx

r
d

c

i
r

ii
i

1    0
12

1
1

>∧=
−

−− ∑
=

ω
ω

, according to Fog (2007). To remove asymmetries, we replace 

L(x)F1(t) by { } 2)1()()(),( 112 τττ −Φ+ΦΛ=Φ xx . This function can be approximated by the Gauss 

curve 






 −−Φ= 2

2
2
1

2
1

2 2
)(exp),(),(

w
ττ xx1U  , where  

)( 2
1ϕ ′′−

= lw ,  )(log)( 1 ττϕ Φ= .  

l  is a correction factor to make sure q(x,t) ≤ 1 for all t. U1 needs to be normalized by its integral 

G
),(),( ττ xx 1U

U = ,  






ΦΛ== ∫ 8
1erf2)()(),( 2

1
1

1

0 w
wtG πτ xx „U1 . (54) 

We can sample from this distribution by sampling from a normal distribution and rejecting values outside 
the interval [0,1]. It is possible to find the minimum value of l  in each case, but this would be a waste of 
computational resources since a higher value of l  may be used without making q(x,t) > 1. The following 
formula has been found experimentally to give a good fit: 
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( ) 23
1 log1 Ek+=l ,  01.1   ,0272.0   ),f(   ,1

212
1

==== ∑
=

kkMkkm
d

E
c

i
iiω . (55) 

With these choices of parameters, the condition 1),( ≤τxq  is satisfied for all x-values for which 

1
)h(
≤=

xk
Gρ . This has been verified experimentally for the univariate distribution by testing with 109 

random parameter sets in the range N § 109 ⁄ 10-9 § w § 109 with the limitation w⋅≤− 302
1τ . Under 

the assumption that the empirical tests have been sufficient, the method is therefore exact when 
601≥w . For 601<w , it can be calculated that the relative error, if any, is certain to be smaller than 

10-195. Applied to the univariate Wallenius' distribution with h(x) as given above, this algorithm was 
found to give a substantial reduction in the sampling time. The set-up time is still dominated by the time 
required to search for the mode. 

6. Sampling from the multivariate Wallenius' noncentral hypergeometric 
distribution 

Of the above methods for sampling from Wallenius' distribution, only the simulation of the urn 
experiment has been applied to the multivariate distribution ),,;mwnchyp()f( ωmxx n= . A rejection 
method for sampling from the multivariate distribution would be useful, but it is difficult to find a good 
dominating function h(x), and universal methods can be quite inefficient (Devroye, 1997; Johnson, 1987). 

6.1  Conditional method 

The conditional method, as described above for the mfnchyp distribution, can be applied analogously to 
the multivariate Wallenius' distribution. The equations (32), (34) and (35) are replaced by 

)/,,,;wnchyp()(f)Pr( LHHHH ωωNmnyyyy ≈== , (56) 

),,;mwnchyp()|Pr( HHHH ωmxxx yyy ≈== , (57) 

),,;mwnchyp()|Pr( LLHL ωmxxx ynyy −≈== . (58) 

Intuitively, we would expect (57) and (58) to be exact, just like (34) and (35) are, but unfortunately this is 
not the case. Nevertheless, (57) and (58) are quite good approximations in most cases, so that the 
precision of this method is determined predominantly by (56). Experiments show that a reasonable 
precision is obtained when differences in weight within groups is not too large. 

6.2  Gibbs sampling 

While the Gibbs sampler for the multivariate Fisher's noncentral hypergeometric distribution is exact in 
the limit, the analogous sampler for the multivariate Wallenius' distribution is not, because the conditional 
distribution is only approximately a univariate Wallenius' distribution, and the exact conditional 
distribution is not simple to calculate. The best convergence is obtained by sorting the colors by variance, 
but the best accuracy is obtained by sorting the colors by weight and skipping the wrap-around steps 
where i = c and j = 1. This method generally gives better accuracy than the conditional method alone. 

6.3  Metropolis-Hastings sampling 

A Metropolis-Hastings sampler is a Markov chain where the transition from state x to state y is defined 
by the proposal density h(y;x) and the probability of acceptance p(y;x). Each step consists of drawing a 
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new proposed state y from h and accepting it with probability p. If y is not accepted then x is retained 
(Hastings, 1970). The limiting distribution f(x) is approached if the following reversibility condition is 
satisfied 

);h()f(
);h()f(

);p(
);p(

xyx
yxy

yx
xy = . (59) 

In order to maximize the acceptance rate, we choose for p the Metropolis dynamics (Peskun, 1973): 









=
);h()f(
);h()f(,1min);p(

xyx
yxyxy , (60) 

which satisfies (59). When f is a multivariate distribution of c dimensions, we can define a scan as a series 
of c consecutive steps in one dimension each, as in the Gibbs sampler. If the proposal distribution for a 
step in dimension i is the conditional distribution (36) then the acceptance rate is 1 and the Metropolis-
Hastings sampler is reduced to a Gibbs sampler. In the case of the multivariate Wallenius' noncentral 
hypergeometric distribution, we can choose the univariate Wallenius' distribution as the proposal density. 
For a step in color i with color j as the dependent 

ijijjijiijiiii yxxymmmxxyxy −+=++=    ),/,,,;wnchypg();h( ωω . (61) 

This is such a good approximation to the conditional distribution that the rate of acceptance will be close 
to 1 and the convergence will be almost as good as for a Gibbs sampler. The conditions for convergence 
are aperiodicity and communication between all points (Smith and Roberts, 1993). These conditions are 
met if all mi and wi are positive. As before, it is preferred to use the approximate variate obtained by the 
conditional method as a starting point and to sort the colors by variance. We do not have an accurate way 
of calculating the variance of the multivariate Wallenius' distribution, but we may use the coarse 
approximation obtained by approximating the mwnchypg distribution with a mfnchypg distribution with 
the same mean and using equation (38). Potential minor errors in the sort order caused by this inaccuracy 
have little influence on the performance. The method is still exact in the limit. This method is fairly time 
consuming, but no other known method gives the same precision faster when n is high. We may replace 
the proposal distribution given by (61) with another distribution such as fnchypg. Sampling from fnchypg 
is considerably faster than sampling from wnchypg, but the imprecision introduced hereby reduces the 
acceptance rate so that a longer burn-in period is needed.  

6.4  Dividing into subsamples 

The accuracy of any of the preceding methods for mwnchypg can be improved by dividing n into S 

smaller samples of positive size nj, so that ∑
=

=
S

j
j nn

1

. Generate a series of variates Yj  (j = 1 .. S)  that 

each approximate a multivariate Wallenius noncentral hypergeometric distribution with the parameters 

),,mwnchyp(~
1

1

ωYmY ∑
−

=

−
j

k
kj n . The combined sample ∑

=

=
S

j
j

1

YX  will then approach the 

distribution ),,mwnchyp( ωmn  when S → n if the distribution of subsamples Yj approach exactness 
when nj → 1, because the taking of n subsamples of size 1 is identical to the urn experiment. This method 
is not very efficient, however, because S has to be quite high in order to obtain a good accuracy. 

7. Suggestions for future research 
There is a need for more efficient and exact sampling methods for the multivariate distributions, possibly 
rejection methods or conditional methods. Theoretically justified hat functions for the rejection methods 
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may be more satisfying than the experimentally obtained formulas. 
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